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In the present paper we study the overdamped motion of Brownian particles in tilted periodic piecewise
linear potentials of two maxima per period. This system allows one to observe additional phenomena with
respect to the case of single-periodic potentials. We show that for certain types of potentials the effective
diffusion coefficientDsFd can be enhanced or suppressed compared to the simple sawtooth case. As the most
unexpected result it is found that the curve of diffusion coefficient vs tilt can have two maxima. In the region
of Poissonian hopping processes we demonstrate the possibility to have a resonantlike peak in the Péclet
number PesFd. At the tilting force corresponding to the maximum of PesFd, the curve of Péclet number vs
temperature possesses two maxima.
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I. INTRODUCTION

Brownian motion in a tilted periodic potential is of rel-
evance in numerous contexts, for it has possible applications
in condensed matter physics, nanotechnology, chemical
physics, and molecular biology[1–4]. However, the determi-
nation of the effective diffusion coefficient of the system for
arbitrary temperature, tilting force, and periodic potential re-
mained a challenging task for decades, even at the over-
damped limit. For the last case, quite recently, exact analytic
treatments were developed[5,6]. Some interesting effects,
such as acceleration of free diffusion as a result of tilting[6],
and nonmonotonic behavior of diffusion coefficient and co-
herence level, as a function of temperature[5], were also
found.

The approach, developed by Reimannet al. [6], has been
applied in Ref.[7] to show that a nonhomogeneous dissipa-
tion can induce a minimum of the diffusion coefficient vs the
applied external force, an enhancement and suppression of
the diffusion as a function of temperature, as well as an
increase of the coherence level of Brownian motion in a
tilted symmetric periodic potential. The approach of Ref.[6]
has been applied also in our previous papers[8,9] to the case
of a tilted piecewise linear potential. The piecewise linear
potential is important for at least two reasons. First, it can be
used as a first approximation of the shape of arbitrary poten-
tial. Second, it is sufficiently simple to allow an exact alge-
braic treatment of the relevant quantities. Considering this,
we carried out a comprehensive study of the dependence of
diffusive and coherent motion of overdamped Brownian par-
ticles on temperature and tilting force, for various shapes of
tilted sawtooth potential of one maximum per period.

In order to describe various systems in condensed matter
physics and biology, more complicated potentials than the
simple sawtooth type potential may be required. The role of
metastable and bistable potentials in the diffusive motion of
particles in periodic structures was pointed out in Refs.
[10,11], in the context of superionic conductors. The
molecular-dynamics simulation of self-diffusion on metal
surfaces[12] and experimental data for superionic conduc-
tors [13] provide the evidence that the potential barriers of
different heights are important for the understanding of trans-

port processes in corresponding systems. Double-barrier po-
tentials are also of relevance in modeling the kinetics of mo-
tor proteins[14] (see also[15]). As emphasized by Asaklilet
al., the diffusion problem in symmetric, and especially in
asymmetric, double-periodic potentials has not been thor-
oughly investigated.

The present contribution continues our study[8,9] of
Brownian motion in tilted piecewise linear potentials, con-
sidering the case when there are two potential barriers per
period. The paper is organized as follows. In Sec. II we in-
troduce the model and the quantities of interest, giving in
Sec. II B an overview of the choice of the potential. In Sec.
III A we study the effective diffusion coefficient. In Sec.
III B we analyze how the additional minimum of the poten-
tial influences the coherence of the Brownian motion. Fi-
nally, our results are summarized in Sec. IV.

II. MODEL AND QUANTITIES OF INTEREST

A. General scheme

We consider the overdamped motion of Brownian particle
with the coordinatexstd in a one-dimensional periodic poten-
tial V0sxd, with 0øV0sxdøA, and periodL, under the influ-
ence of a constant external forceF, at temperatureT. The
Langevin equation for such a system reads

h
dxstd

dt
= −

dV0sxd
dx

+ F + jstd, s1d

where h is the viscous friction coefficient, andjstd is the
zero mean Gaussian white noise with correlation function
kjstdjst8dl=2hkBTdst− t8d. The quantityVsxd=V0sxd−Fx is
called the effective potential.

The basic quantities of interest are the average particle
current in the long-time limit

kẋl = lim
t→`

kxstdl
t

, s2d

and the effective diffusion coefficient in the same time scale,
defined as
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D = lim
t→`

kx2stdl − kxstdl2

2t
. s3d

The analytical solution for the particle current(2) goes
back to Stratonovich[16] and has subsequently been red-
erived many times[1,5,6],

kẋl = N−1s1 − e−LF/kBTd. s4d

The effective diffusion coefficient(3) for the model(1) with
Fù0 can be written as[6]

D =
D0

N3E
x0

x0+L

I+sxdfI−sxdg2dx

L
. s5d

In the last two equations

N =E
x0

x0+L

I−sxd
dx

L
s6d

and

I±sxd = 7
1

D0
e±Vsxd/kBTE

x

x7L

e7Vsyd/kBTdy, s7d

where x0 is an arbitrary point andD0=kBT/h is the free
diffusion coefficient.

The third quantity of interest is the Péclet number

Pe =
Lkẋl
D

, s8d

which characterizes the relationship between the directed and
diffusive movement of a Brownian particle[5,8,17]. Some-
times it is more convenient to use the randomness parameter
[18,19], which is actually measured in experiments, defined
as the long time limit of the ratio between the variance of the
particle’s position and the product of its average position and
periodicity,

r = lim
t→`

kx2stdl − kxstdl2

kxstdlL
. s9d

The definitions of the diffusion coefficient and current imply

r =
2D

kẋlL
. s10d

Thus Pe=2r−1, and it is easy to switch between these two
quantities, Péclet number and randomness parameter.

B. Choice of potential

The behavior of Brownian particles is determined by the
effective potentialVsxd and the noisejstd. Figure 1 depicts
the general shape of the potential used in the present paper
(solid line), with no tilting force, and for a finite value of
tilting. For comparison, the simple sawtooth potential is
given (dashed line), examined by us in Refs.[8,9]. With no
loss of generality we have taken the periodL=1 and the
amplitude A=1; we assume that 0,k1,k2,k,1, 0
øA1,A2ø1, and DA=A2−A1,1, whereas we are inter-

ested in having an additional trap with a smaller potential
barrier than the primary barrier. Hence there are two values
of the tilt corresponding to the disappearance of the two
minima: Fce=DA/Dk (whereDk=k2−k1) for the additional,
and Fc=1/s1−kd for the primary, barrier. We refer to the
critical tilt, as the valuefc=maxsFce,Fcd, so that a potential
will have no potential barriers.

All the quantities, we are going to present and plot in this
paper, will be in dimensionless units(see Ref.[8]). Further-
more, it is convenient to express the tilt in units ofFc by
redefining

Fce=
DAs1 − kd

Dk
, Fc = 1. s11d

The dimensionless double-periodic potential, depicted in
Fig. 1, is defined as follows(n=1,2,… is the number of the
period):

Vansxd = a0n − ax, sn − 1d ø x ø k1 + sn − 1d,

Vbnsxd = − b0n + bx, k1 + sn − 1d ø x ø k2 + sn − 1d,

Vcnsxd = c0n − cx, k2 + sn − 1d ø x ø k + sn − 1d,

Vdnsxd = − d0n − dx, k + sn − 1d ø x ø n, s12d

where

a0n = A1 +
1 − A1

k1
fk1 + sn − 1dg, a =

1 − A1

k1
+

F

1 − k
,

b0n = − A1 +
DA

Dk
fk1 + sn − 1dg, b =

DA

Dk
−

F

1 − k
,

FIG. 1. The general shapes of the effective potentials for tilting
forcesF=0 (above) andF=0.95(below). Solid line: piecewise lin-
ear double-periodic potential fork1=0.35,k2=0.5, k=0.6, A1

=0.2, A2=0.7. Dashed line: simple sawtooth potential, used in
Refs.[8,9], for asymmetry parameterk=0.6.
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c0n =
A2

k − k2
fk + sn − 1dg, c =

A2

k − k2
+

F

1 − k
,

d0n =
1

1 − k
fk + sn − 1dg, d =

1 − F

1 − k
. s13d

We emphasize that the general character of the transport
process is determined by the value ofFce, and thus for a
fixed k by the differencesDA and Dk. The values of single
parametersk1, k2, A1, A2 are of no importance, while the
differencesDA andDk play a role, even if the values ofFce,
determined by them, are the same.

All the dependencies we are going to plot in this paper are
calculated on the basis of the explicit algebraic expressions
for the diffusion coefficient, current, and Péclet number. The
calculations are done analogously to the ones carried out in
Ref. [8] for the simple sawtooth potential and are revealed in
the Appendix.

III. INFLUENCE OF AN EXTRA TRAP

A. Diffusion

At low temperature a double-periodic potential gives a
possibility to favor or suppress the maximal value of the
diffusion coefficient DsFd, compared to the case of the
simple sawtooth potential. The situation is illustrated in Fig.
2. In the caseFce,Fc the maximal value ofDsFd is de-
creased due to the additional potential minima, which can be
easily understood if we think of climbing. The decrease is, at
fixed k and DA, largest if Fce=Fc. For Fce.Fc diffusion
starts to increase. IfFce is larger than the value of the tilting
force, which corresponds to the maximum ofDsFd in the
case of the simple sawtooth potential, then the maximal
value of diffusion increases due to the extra trap. The two
casesFce,Fc andFce.Fc are in a sense equal, whereas the
tilt corresponding to the maximum ofDsFd is close to the
value of fc and thus one of the minima is stretched out. If
Fce=Fc then the effective potential contains atFmax< fc
more segments where the value of deterministic force is ap-
proximately zero and thus the spreading is suppressed com-
pared to the one in single-barrier potential as well as in a
double-periodic potential withFceÞFc. At higher tempera-

ture the existence of an additional potential trap diminishes
the diffusion.

Henceforth our main interest will be focused on the po-
tentials withFce.Fc, which provide additional phenomena
with respect to the case of simple periodic potentials. The
caseFce,Fc does not differ, ifF→Fc, much from the case
of the simple sawtooth potential. However, we remark that in
biological systems potentials for whichFce,Fc, often play a
role [14,15].

In Fig. 3 we have depicted the diffusion coefficient vs
tilting force for the different values of temperature, for a
potential for whichFce.Fc [20]. This figure highlights a
counterintuitive phenomenon: at lower noise intensities, the
maximal value of the diffusion coefficientDsFd can be big-
ger than at higher noise intensities(compare curves 2, 3, and
4 with each other, or 1 with 4, or 2 with 5). At low and high
values of temperature the situation is back to usual(compare
curves 1 with 2, and 4 with 5). In Ref. [9] we have observed
a similar situation for the simple sawtooth potential in the
casek.kE<0.8285(see Fig. 2 in Ref.[9]). Such a behavior
is explained by the ratio between escape and relaxation times
at different noise intensities and the relaxation time depen-
dence on the temperature(see Ref.[5] for more details). At
lower and intermediate temperatures the maximum of diffu-
sion coefficientDsFd occurs around the tiltfc, thus the re-
laxation time is larger for the potentials withFce.Fc [21]
and one can obtain the effect also for the potentials with
smaller asymmetry parameter thankE. If k.kE the effect is
just more remarkable if there is also an additional trap with
Fce.Fc. For the two cases, the single-periodic and double-
periodic potentials just discussed, the general behavior of the
diffusion coefficientDsT,Fd is the same.

Figure 4 represents the dependenceDsFd in the case of
the same potential as used in Fig. 3, but in a logarithmic
scale. In this plot one can distinguish two acceleration rates
for the diffusion. The two rates are the more different, the
lower the noise intensity, and associate with two different
Poissonian processes(the latter fact will be discussed in
more details in Sec. III B). Thereby the Poissonian process in
the first region coincides with the one which takes place in
the corresponding simple sawtooth potential. The picture for
the current is similar.

The presence of two potential barriers leads one to think
that there can be two maxima of the diffusion coefficient vs

FIG. 2. The enhancement and suppression of the diffusion co-
efficient, compared to the simple sawtooth potential, due to the
additional trap.T=0.01,k=0.6, DA=0.45. In decreasing order of
the maximal values ofDsFd: (1), Fce=1.5; (2), simple sawtooth
potential;(3), Fce=0.5; (4), Fce=Fc=1.

FIG. 3. The plot of the diffusion coefficientDsFd for the differ-
ent values of temperature. Potential parameters:k1=0.4, k2

=0.5, k=0.6, A1=0.55,A2=1,Fce=1.8.
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tilting force, however, in practice such a situation is not
trivial. Nevertheless, for a certain type of potential shape it is
possible to obtain a situation, for which the diffusion coeffi-
cient DsFd possesses two maxima and passes a considerable
minimum under the critical tilt(see Fig. 5). The minimum of
DsFd is the deepest in the temperature region where the am-
plification of diffusion is minimal and the maxima ofDsFd
are equal. At higher and lower temperatures one of the
maxima starts to dominate and the other one to decrease. To
obtain two maxima in the dependence ofDsFd a small but
sharp additional potential barrier is needed, which is fol-
lowed by a steep fall. However, the situation is extremely
sensitive to the potential parameters and to the noise inten-
sity and needs to be studied further.

B. Coherence of motion

The transport of Brownian particles is characterized by
the average motion in the direction of the bias and the
spreading due to the noise. By coherent motion one means
large particle current with minimal diffusion; hence the
greater the Péclet number, the greater the coherence of
Brownian transport. When one is speaking of the coherence
of motion, one mostly speaks in the context of noise inten-
sity. However, the Péclet number as a function of bias offers
also interesting properties.

In Refs. [8,9] it was shown in the case of a simple saw-
tooth potential that at low temperatures and for subcritical tilt
the coherence level stabilizes at the value of Péclet number
PesFd=2. In this region the acceleration of diffusion is most

essential. The situation corresponds to the case when par-
ticles are mainly localized around the potential minima and
transport can be described with great accuracy by the Pois-
sonian hopping process.

Considering the double-periodic potentials, the average
distribution of Brownian particles can change at low tem-
peratures drastically for different values of the subcritical
tilting force. For the potentials withFce.1 there exists a
threshold value of the tilting force

F0 =
s1 − DAds1 − kd

1 − k − Dk
, s14d

at which the main potential barrier becomes smaller than the
additional barrier. IfF,F0, particles are mainly localized
near the primary traps, whereas ifF.F0, near the extra
traps. As a result the acceleration of diffusionvs tilting force
is realized through two different Poissonian processes: The
first one takes place ifF,F0, while the second one if
F.F0. As seen in Fig. 6, the two regions of the acceleration
of diffusion in Fig. 4 correspond to these different Poisson
processes.

In the region of crossover between the two regimes of the
enhancement of diffusion, the Péclet number passes through
a sharp maximum(a minimum in randomness parameter)
with the characteristic value Pe=4sr =1/2d. The observed en-
hancement of coherence—decrease of randomness—appears
in the region where the acceleration regime of diffusion and
current changes, whereas the increase of diffusion slows
down compared to the increase of current(see Fig. 7). In this
case the average populations of the primary traps and the
extra traps are close to each other and the possibility of the
localization of Brownian particles near the minima of both
types is considerable, leading to the relative suppression of
diffusion. The suppression is the largest if both of the poten-
tial traps are switched on with equal weights. Such a dou-
bling of the effective number of the localization centers in
the region of Poissonian process gives a qualitative explana-
tion for the universal value of Péclet number Pe=4. It agrees
also with the result of Ref.[18] obtained for two-step hop-
ping processes applicable for the approximate description of
transport in present situation. In Fig. 7 one can see also that
the tilting forceF0 lies approximately in the beginning of the
domain of crossoversF0=0.733d.

FIG. 4. The plot of the diffusion coefficient for different noise
intensities. For solid lines the potential parameters are the same as
in Fig. 3: (1), T=0.005; (2), T=0.01; (3), T=0.03. Dashed lines:
diffusion coefficients for the sawtooth potential with asymmetry
parameterk=0.6 at the same temperatures.

FIG. 5. The existence of two maxima for diffusion coefficientvs
tilting force: (1), T=0.0095;(2), T=0.01; (3), T=0.0105. The po-
tential parameters arek1=0.79,k2=0.8, k=0.81,A1=0.888,A2=1.

FIG. 6. The comparison of the dependencies of the diffusion
coefficient and Péclet number on the tilting force. Dashed line,
log10fDsFd /Ds0dg; solid line, 53Pe. TemperatureT=0.01.
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For the existence of the extremum in the coherence of
Brownian motion vs tilt, the conditionFce.1 must be satis-
fied. The tilting forceF0 has a physical meaning only if the
latter inequality is satisfied, having the value in the range
0,F0,1. This circumstance follows[22] from Eq. (14) to-
gether with Eq.(11) for Fce which leads to the relation

s1 − F0d =
Dk

1 − k − Dk
sFce− 1d. s15d

If Fce,1, the Péclet number PesFd does not have a maxi-
mum[23]. On the other hand, ifF0,1 is sufficiently close to
unity, the peak of coherence merges into the region where
the motion cannot be described as the Poissonian process
anymore and PesFd increases monotonically. In particular,
this case is actual for the potentials for which the diffusion
coefficientDsFd possesses two maxima.

With the rise of temperature the peak of the coherence
disappears. We have illustrated the situation in Fig. 8 for the
randomness parameter. At higher temperature the minimum
of the randomness parameter broadens, whereas the region of
tilting force where the two potential minima have a compa-
rable weight enlarges, and the posterior part of the plateau
diminishes(the transport between extra traps is not describ-
able with a Poissonian hopping process anymore) and finally
randomness decreases and coherence increases monotoni-
cally.

In our previous papers[8,9] on diffusion and current in
tilted piecewise linear potentials, we have demonstrated the
possibility to obtain the existence of a maximum in the Pé-
clet number vs temperature for a simple sawtooth potential
(cf. [5]), in connection with the minimum in the diffusion
coefficient, for increasing noise intensity. In Refs.[5,7] it is
pointed out that for a homogeneous system the Péclet num-
ber can show a maximum, although neither the diffusion
coefficient nor the average current density shows an extre-
mum. The present model allows us to observe for different
tilts both the phenomena as one can see in Fig. 9. The situ-
ation is actually valid also for the simple sawtooth potential;
however, the latter effect is small. Thus we can say that the
characteristic features of the transport of Brownian particles
in tilted inhomogeneous systems can be reproduced also in
the framework of the minimal scheme(cf. Refs. [5,7,24]).
Furthermore, as one can see in Fig. 10, in the region of static
external force, where PesFd exhibits a maximum(minimum
in randomness factor), the Péclet number vs temperature has
two maxima, and is extremely sensitive to noise intensity.
The observed behavior of the Péclet number reflects first of
all the complicated properties of diffusion coefficient as a
function of the tilting force and temperature.

FIG. 8. The plot of the randomness parameterr vs tilt F for
different noise intensities:(1), T=0.01; (2), T=0.03; (3), T=0.06. FIG. 10. The existence of two maxima in Pe vsT.

FIG. 7. Appearance of the minimum in the randomness param-
eterrsFd in the region of the crossover. The plot of the randomness
parameter, current, and diffusion coefficient vs tilting force atT
=0.01.(1), 103 sr −3d; (2), lns2Dd; (3), lnskẋld; dashed line corre-
sponds to the coherence level withr =1.

FIG. 9. Diffusion coefficient and Péclet number vs temperature
for different tilts: (1), F=0.7; (2), F=0.8; (3), F=1.1; (4), F=1.75.
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IV. CONCLUSIONS

In the present paper we have studied the overdamped
Brownian motion in tilted double-periodic piecewise linear
potentials, being obviously more realistic and flexible for
possible applications in condensed matter physics and biol-
ogy, in the presence of white thermal noise. It proves that
due to an additional potential barrier, for certain parameter
values, many new effects occur in the transport processes of
Brownian particles, in particular ifFce.Fc.

The general dependence of the diffusion coefficient vs
tilting force obeys as a rule the typical behavior found ear-
lier. However, in the present case, the acceleration of diffu-
sion is characterized by two regions, related to the two po-
tential barriers and different Poissonian processes. In the
region of the crossover we have demonstrated the possibility
to have a resonantlike peak in the Péclet number PesFd. For
the values of tilting force characteristic of the enhancement
of the coherence, the Péclet number vs noise intensity pos-
sesses two maxima. Furthermore, for a certain type of poten-
tial, the effective diffusion coefficientDsFd can have two
maxima.
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APPENDIX: ANALYTICAL RESULTS FOR
DOUBLE-PERIODIC POTENTIAL

In dimensionless units the expressions for the diffusion
coefficient, current, and Péclet factor have the following
form [8]:

D = TYZ−3, sA1d

kẋl = w0Z
−1, sA2d

Pe =w0Z
2sTYd−1, sA3d

where

w0 = 1 − expS−
F

Ts1 − kdD , sA4d

and in the case of the potential determined by Eqs.(12) and
(13),

Z =E
0

k1

dx H−asxd +E
k1

k2

dx H−bsxd +E
k2

k

dx H−csxd

+E
k

1

dx H−dsxd, sA5d

Y =E
0

k1

dx H+asxdH−a
2 sxd +E

k1

k2

dx H+bsxdH−b
2 sxd

+E
k2

k

dx H+csxdH−c
2 sxd +E

k

1

dx H+dsxdH−d
2 sxd.

sA6d
Using the notationvsxd=Vsxd /T, we have

H±asxd =
e−Fs1±1d/2Ts1−kd

D0
e±va1sxdSE

x

k1

dy e7va1syd

+E
k1

k2

dy e7vb1syd +E
k2

k

dy e7vc1syd +E
k

1

dy e7vd1syd

+E
1

x+1

dy e7va2sydD ,

H±bsxd =
e−Fs1±1d/2Ts1−kd

D0
e±vb1sxdSE

x

k2

dy e7vb1syd

+E
k2

k

dy e7vc1syd +E
k

1

dy e7vd1syd +E
1

k1+1

dy e7va2syd

+E
k1+1

x+1

dy e7vb2sydD ,

H±csxd =
e−Fs1±1d/2Ts1−kd

D0
e±vc1sxdSE

x

k

dy e7vc1syd

+E
k

1

dy e7vd1syd +E
1

k1+1

dy e7va2syd

+E
k1+1

k2+1

dy e7vb2syd +E
k2+1

x+1

dy e7vc2sydD ,

H±dsxd =
e−Fs1±1d/2Ts1−kd

D0
e±vd1sxdSE

x

1

dy e7vd1syd

+E
1

k1+1

dy e7va2syd +E
k1+1

k2+1

dy e7vb2syd

+E
k2+1

k+1

dy e7vc2syd +E
k+1

x+1

dy e7vd2sydD . sA7d

Performing the integrations in Eqs.(A7) one obtains after
some cumbersome calculations the algebraic expressions for
the quantitiesZ andY, given by Eqs.(A5) and (A6):

Z = w0Sk1gab − k2gbc + k gcd −
1

d
D

+
T

a
S1s1 − l1d +

T

b
S2s1 − l2d −

T

c
S3s1 − l3d

+
T

d
S4s1 − l4d, sA8d
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Y = w0
3Fk1S 1

a3 +
1

b3D − k2S 1

b3 +
1

c3D + kS 1

c3 +
1

d3D −
1

d3G + Tw0
2S s1 − l1d

a3 s2S1 + S18d +
s1 − l2d

b3 s2S2 + l2
−1S28d −

s1 − l3d
c3 s2S3 + S38d

+
s1 − l4d

d3 s2S4 + l4
−1S48dD + TS s1 − l1d

a
S1

2Fl1S18 +
w0

2a
s1 + l1dG +

1 − l2

b
S2

2FS28 −
w0

2b
s1 + l2dG −

s1 − l3d
c

S3
2Fl3S38 +

w0

2c
s1

+ l3dG +
s1 − l4d

d
S4

2FS48 −
w0

2d
s1 + l4dGD + 2w0Sk1

a
l1S1S18 −

Dk

b
S2S28 +

k − k1

c
l3S3S38 −

1 − k

d
S4S48D . sA9d

Here

gab =
1

a
+

1

b
, gbc =

1

b
+

1

c
,

gcd =
1

c
+

1

d
, gad =

1

a
+

1

d
; sA10d

l1 = expS−
Fk1

Ts1 − kd
−

1 − A1

T
D ,

l2 = expS FDk

Ts1 − kd
−

DA

T
D ,

l3 = expSFsk − k2d
Ts1 − kd

+
A2

T
D ,

l4 = expS−
1 − F

T
D ,

l5 = expSFsk − k1d
Ts1 − kd

+
A1

T
D ,

l6 = expSFs1 − k1d
Ts1 − kd

−
1 − A1

T
D ,

l7 = expSFs1 − k2d
Ts1 − kd

−
1 − A2

T
D; sA11d

S1 = − gab +
gbc

l2
−

gcd

l5
+

gad

l6
,

S18 =
gab

l6
−

gbc

l7
+

gcd

l4
− gad,

S2 = − gabs1 − w0d +
gbc

l2
−

gcd

l5
+

gad

l6
,

S28 = gab − gbcl2s1 − w0d + gcdl5s1 − w0d − gadl6s1 − w0d,

S3 = − gabl2s1 − w0d + gbcs1 − w0d −
gcd

l3
+

gad

l7
,

S38 =
gab

l5
−

gbc

l3
+ gcds1 − w0d − gadl4s1 − w0d,

S4 = − gabl5s1 − w0d + gbcl3s1 − w0d − gcds1 − w0d +
gad

l4
,

S48 =
gab

l5
−

gbc

l3
+ gcd − gadl4s1 − w0d. sA12d
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