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Diffusion and coherence in tilted piecewise linear double-periodic potentials
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In the present paper we study the overdamped motion of Brownian particles in tilted periodic piecewise
linear potentials of two maxima per period. This system allows one to observe additional phenomena with
respect to the case of single-periodic potentials. We show that for certain types of potentials the effective
diffusion coefficientD(F) can be enhanced or suppressed compared to the simple sawtooth case. As the most
unexpected result it is found that the curve of diffusion coefficient vs tilt can have two maxima. In the region
of Poissonian hopping processes we demonstrate the possibility to have a resonantlike peak in the Péclet
number P&). At the tilting force corresponding to the maximum of(Pg the curve of Péclet number vs
temperature possesses two maxima.
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I. INTRODUCTION port processes in corresponding systems. Double-barrier po-
Brownian motion in a tilted periodic potential is of rel- tentials are also of relevance in modeling the kinetics of mo-

evance in numerous contexts, for it has possible application® Proteing14] (see alsq15]). As emphasized by Asaklét

in condensed matter physics, nanotechnology, chemical- the diffusion problem in symmetric, and especially in

physics, and molecular biologygt—4]. However, the determi- asymmetric, double-periodic potentials has not been thor-

nation of the effective diffusion coefficient of the system for oughly investigated.

arbitrary temperature, tilting force, and periodic potential re- The present contribution continues our stuf8;9] of

mained a challenging task for decades, even at the oveBrownian motion in tilted piecewise linear potentials, con-

damped limit. For the last case, quite recently, exact analytisidering the case when there are two potential barriers per

treatments were developg8,6]. Some interesting effects, period. The paper is organized as follows. In Sec. Il we in-

such as acceleration of free diffusion as a result of tilfifly ~ troduce the model and the quantities of interest, giving in

and nonmonotonic behavior of diffusion coefficient and co-Sec. Il B an overview of the choice of the potential. In Sec.

herence level, as a function of temperat(is§ were also Il A we study the effective diffusion coefficient. In Sec.

found. Il B we analyze how the additional minimum of the poten-
The approach, developed by Reimaetral. [6], has been tial influences the coherence of the Brownian motion. Fi-

applied in Ref[7] to show that a nonhomogeneous dissipa-nally, our results are summarized in Sec. IV.

tion can induce a minimum of the diffusion coefficient vs the

applied external force, an enhancement and suppression of

the diffusion as a function of temperature, as well as an Il. MODEL AND QUANTITIES OF INTEREST

increase of the coherence level of Brownian motion in a

tilted symmetric periodic potential. The approach of Réf. ) ] _ .

has been applied also in our previous pag8rg] to the case We consider the overdamped motion of Brownian particle

of a tilted piecewise linear potential. The piecewise lineaWith the coordinate(t) in a one-dimensional periodic poten-

potential is important for at least two reasons. First, it can bdial Vo(x), with 0<V,(x) <A, and period., under the influ-

used as a first approximation of the shape of arbitrary poterence of a constant external forée at temperaturd. The

tial. Second, it is sufficiently simple to allow an exact alge-Langevin equation for such a system reads

braic treatment of the relevant quantities. Considering this, dx(t) V(%)

we carried out a comprehensive study of the dependence of - - _ O Fs &), (1)

diffusive and coherent motion of overdamped Brownian par- dt dx

ticles on temperature and tilting force, for various shapes of heqre 7 is the viscous friction coefficient, andt) is the

tilted sawtooth potential of one maximum per period. zero mean Gaussian white noise with correlation function

In order to describe various systems in condensed matter, "y — / ; — ;
t)&(t'))=2nkgTo(t—t"). Th tityV(x) =Vo(X) —F
physics and biology, more complicated potentials than chi(")j tgl>e ef?egtive(: pot)entiaf quantityV(x)=Vo(x) ~Fx is

simple sawtooth t_ype potential may be reqylreq. The r_ole of The basic quantities of interest are the average particle

metastable and bistable potentials in the diffusive motion of . . o
) . o . . current in the long-time limit

particles in periodic structures was pointed out in Refs.

[10,17, in the context of superionic conductors. The o Ax@))

molecular-dynamics simulation of self-diffusion on metal <X>:t|'”o‘c ¢ (2)

surfaceg[12] and experimental data for superionic conduc-

tors [13] provide the evidence that the potential barriers ofand the effective diffusion coefficient in the same time scale,

different heights are important for the understanding of transelefined as

A. General scheme
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The analytical solution for the particle curre¢®) goes Az
back to Stratonoviclj16] and has subsequently been red- V&
erived many time$1,5,q,
<X> — N—l(l _ e—LF/kBT)' (4) Al
The effective diffusion coefficient3) for the model(1) with 0 k1 k2k 1 Ls 2
F=0 can be written a§6] " Fo095
Dg (o' dx ]
D=3| LM (5) °
X0 -14
. V(x) ]
In the last two equations -2 i
X0+L dX _3- ;
N= J [_(x)— (6) |
X L -4 ;
0 f T
0 0.5 1 1.5 2
and
1 XFL FIG. 1. The general shapes of the effective potentials for tilting
.x)=* —etv(x)/kBTf eiv(y)/kBTdy, (7) forcesF=0 (above andF=0.95(below). Solid line: piecewise lin-
- Do X ear double-periodic potential fork;=0.35,k,=0.5,k=0.6,A;

. . . ) =0.2,A,=0.7. Dashed line: simple sawtooth potential, used in
where Xy is an arbitrary point andy=kgT/ 7 is the free Refs.[8,9], for asymmetry parametés=0.6.
diffusion coefficient.

The third quantity of interest is the Péclet number ested in having an additional trap with a smaller potential

L(X) barrier than the primary barrier. Hence there are two values
:F: (8) of the tilt corresponding to the disappearance of the two
minima: F.e=AA/Ak (where Ak=k,—k;) for the additional,
which characterizes the relationship between the directed armhd F.=1/(1-k) for the primary, barrier. We refer to the
diffusive movement of a Brownian particl&,8,17. Some- critical tilt, as the valuef.=maxF,F.), so that a potential
times it is more convenient to use the randomness parametgjill have no potential barriers.
[18,19, which is actually measured in experiments, defined Al the quantities, we are going to present and plot in this
as the long time limit of the ratio between the variance of thepaper, will be in dimensionless unitsee Ref[8]). Further-
particle’s position and the product of its average position angnore, it is convenient to express the tilt in units f by
periodicity, redefining
_ e O4) = () AA(L —K)
tlm xOL (9) Fee= K F.=1. (12)
The definitions of the diffusion coefficient and currentimply ~ The dimensionless double-periodic potential, depicted in
Fig. 1, is defined as followen=1,2,.. is the number of the

Pe

2D I
r= m (10 period:
X
VanX) =agn—ax, (n—-1) s=x<k +(n-1),
Thus Pe=2"1, and it is easy to switch between these two
guantities, Péclet number and randomness parameter. Vpn(X) = —bop +bx, ki +(N-1) <x<ky+(n—1),

B. Choice of potential Van¥) =Con =X, ko *(n-1) <x<k+(n-1),
The behavior of Brownian particles is determined by the Vgn(X) = —dgy—dx, k+(n-1)<x<n, (12)

effective potential(x) and the noise4(t). Figure 1 depicts

the general shape of the potential used in the present pap&here

(solid line), with no tilting force, and for a finite value of

tilting. For comparison, the simple sawtooth potential is  ag,=A;+

given (dashed ling examined by us in Ref$8,9]. With no

loss of generality we have taken the peribd1 and the

amplitude A=1; we assume that Ok;<k,<k<1,0

sA<A,=<1, and AA=A,-A;<1, whereas we are inter-

Al 1_A1 F
ky+(n-1 =+ —
K [k +(n=1)], a Kk T1-K

AA
b0n=‘A1+E[k1+(”‘1)]a b=~ T«
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FIG. 2. The enhancement and suppression of the diffusion co- FIG. 3. The plot of the diffusion coe_fficierD(F) for the differ-
efficient, compared to the simple sawtooth potential, due to theent values of temperaiure. Potential parameteess0.4,k
additional trap.T=0.01,k=0.6,AA=0.45. In decreasing order of =0.5,k=0.6,A;=0.55,A;=1,Fc=1.8.
the maximal values oD(F): (1), F=1.5; (2), simple sawtooth
potential;(3), F¢=0.5; (4), Fee=Fc=1. . . ) o

ture the existence of an additional potential trap diminishes

the diffusion.
Con = A [k+(n-1)], c= a + L, Henceforth our main interest will be focused on the po-
k=ky k—=k; 1-k tentials with F..> F., which provide additional phenomena
with respect to the case of simple periodic potentials. The
1 1-F caseF<F. does not differ, iff — F;, much from the case
don = ﬁ[k +(n-1], d= 1-k (13 of the simple sawtooth potential. However, we remark that in

biological systems potentials for whi¢h.<F,, often play a
We emphasize that the general character of the transpordle [14,15.
process is determined by the value f, and thus for a In Fig. 3 we have depicted the diffusion coefficient vs
fixed k by the differencesdA and Ak. The values of single tilting force for the different values of temperature, for a
parameter,, k,, A;, A, are of no importance, while the potential for whichF.>F. [20]. This figure highlights a
differencesAA and Ak play a role, even if the values &%, counterintuitive phenomenon: at lower noise intensities, the
determined by them, are the same. maximal value of the diffusion coefficiem(F) can be big-
All the dependencies we are going to plot in this paper argjer than at higher noise intensiti@®mpare curves 2, 3, and
calculated on the basis of the explicit algebraic expressiong with each other, or 1 with 4, or 2 with)5At low and high
for the diffusion coefficient, current, and Péclet number. Thevalues of temperature the situation is back to ugcaipare
calculations are done analogously to the ones carried out iburves 1 with 2, and 4 with)5In Ref.[9] we have observed
Ref. [8] for the simple sawtooth potential and are revealed ina similar situation for the simple sawtooth potential in the
the Appendix. casek > kg~ 0.8285(see Fig. 2 in Ref[9]). Such a behavior
is explained by the ratio between escape and relaxation times
Il INFLUENCE OF AN EXTRA TRAP at different noise intensities and the relaxation time depen-
dence on the temperatu¢eee Ref[5] for more details At
lower and intermediate temperatures the maximum of diffu-
At low temperature a double-periodic potential gives asion coefficientD(F) occurs around the tilf., thus the re-
possibility to favor or suppress the maximal value of thelaxation time is larger for the potentials wiff,,>F. [21]
diffusion coefficient D(F), compared to the case of the and one can obtain the effect also for the potentials with
simple sawtooth potential. The situation is illustrated in Fig.smaller asymmetry parameter thian If k> kg the effect is
2. In the caseF<F. the maximal value oD(F) is de- just more remarkable if there is also an additional trap with
creased due to the additional potential minima, which can b&..>F.. For the two cases, the single-periodic and double-
easily understood if we think of climbing. The decrease is, aperiodic potentials just discussed, the general behavior of the
fixed k and AA, largest if F,.=F;. For F..>F, diffusion  diffusion coefficientD(T,F) is the same.
starts to increase. F is larger than the value of the tilting Figure 4 represents the dependemé) in the case of
force, which corresponds to the maximum DfF) in the  the same potential as used in Fig. 3, but in a logarithmic
case of the simple sawtooth potential, then the maximascale. In this plot one can distinguish two acceleration rates
value of diffusion increases due to the extra trap. The twdor the diffusion. The two rates are the more different, the
cases.<F. andF.>F, are in a sense equal, whereas thelower the noise intensity, and associate with two different
tilt corresponding to the maximum dd(F) is close to the Poissonian processdthe latter fact will be discussed in
value of f. and thus one of the minima is stretched out. If more details in Sec. Il B Thereby the Poissonian process in
F..=F. then the effective potential contains &, ~f. the first region coincides with the one which takes place in
more segments where the value of deterministic force is apthe corresponding simple sawtooth potential. The picture for
proximately zero and thus the spreading is suppressed corthe current is similar.
pared to the one in single-barrier potential as well as in a The presence of two potential barriers leads one to think
double-periodic potential withr..# F.. At higher tempera- that there can be two maxima of the diffusion coefficient vs

A. Diffusion
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FIG. 4. The plot of the diffusion coefficient for different noise 0 04 08 Fl2 16 2

intensities. For solid lines the potential parameters are the same as ) ) o
in Fig. 3: (1), T=0.005;(2), T=0.01; (3), T=0.03. Dashed lines: FIG. 6. The comparison of the dependencies of the diffusion

diffusion coefficients for the sawtooth potential with asymmetry COefficient and Péclet number on the tilting force. Dashed line,
parametek=0.6 at the same temperatures. log;o D(F)/D(0)]; solid line, 5X Pe. Temperatur&=0.01.

tilting force, however, in practice such a situation is notessential. The situation corresponds to the case when par-

trivial. Nevertheless, for a certain type of potential shape it idicles are mainly localized around the potential minima and
possible to obtain a situation, for which the diffusion coeffi- ransport can be described with great accuracy by the Pois-

cientD(F) possesses two maxima and passes a considerai@nian hopping process. o _
minimum under the critical tilisee Fig. 5. The minimum of Considering the double-periodic potentials, the average

D(F) is the deepest in the temperature region where the anfliStribution of Brownian particles can change at low tem-
plification of diffusion is minimal and the maxima @(F) peratures drastically for different values of the subcritical

are equal. At higher and lower temperatures one of thﬂgrmghf%c\e/' IFor ;Ehtﬁ pgﬁ?;]t'?lsr witc.>1 there exists a
maxima starts to dominate and the other one to decrease. eshold value ot the g force

obtain two maxima in the dependence @fF) a small but

sharp additional potential barrier is needed, which is fol- o:w (14)
lowed by a steep fall. However, the situation is extremely 1-k-Ak

sensitive to the potential parameters and to the noise inten-

sity and needs to be studied further. at which the main potential barrier becomes smaller than the

additional barrier. IfF <F,, particles are mainly localized
near the primary traps, whereas Rf>F,, near the extra
traps. As a result the acceleration of diffusigstilting force

The transport of Brownian particles is characterized byjs realized through two different Poissonian processes: The
the average motion in the direction of the bias and theirst one takes place iF <F, while the second one if
spreading due to the noise. By coherent motion one mears>F,. As seen in Fig. 6, the two regions of the acceleration
large particle current with minimal diffusion; hence the of diffusion in Fig. 4 correspond to these different Poisson
greater the Peclet number, the greater the coherence gfocesses.

Brownian transport. When one is speaking of the coherence |n the region of crossover between the two regimes of the
of motion, one mostly speaks in the context of noise intenenhancement of diffusion, the Péclet number passes through
sity. However, the Péclet number as a function of bias offergy sharp maximun(a minimum in randomness paraméter
also interesting properties. with the characteristic value Pe&41/2). The observed en-

In Refs.[8,9] it was shown in the case of a simple saw- hancement of coherence—decrease of randomness—appears
tooth potential that at low temperatures and for subcritical t||t|n the region where the acceleration regime of diffusion and
the coherence level stabilizes at the value of Péclet numej'urrent Changes, whereas the increase of diffusion slows
PdF):Z In this region the acceleration of diffusion is most down Compared to the increase of Curr@fﬁe F|g 7 In this
case the average populations of the primary traps and the
extra traps are close to each other and the possibility of the

B. Coherence of motion

0127 1 localization of Brownian particles near the minima of both
types is considerable, leading to the relative suppression of
0.08 diffusion. The suppression is the largest if both of the poten-
D tial traps are switched on with equal weights. Such a dou-
0.04 bling of the effective number of the localization centers in
the region of Poissonian process gives a qualitative explana-
tion for the universal value of Péclet number Pe=4. It agrees

0 H Y 3 also with the result of Refl18] obtained for two-step hop-
ping processes applicable for the approximate description of
FIG. 5. The existence of two maxima for diffusion coefficigst ~ transport in present situation. In Fig. 7 one can see also that
tilting force: (1), T=0.0095;(2), T=0.01;(3), T=0.0105. The po- the tilting forceF, lies approximately in the beginning of the
tential parameters alg=0.79,k,=0.8,k=0.81,A,=0.888,A,=1.  domain of crossovetF;,=0.733.
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FIG. 7. Appearance of the minimum in the randomness param- nPe) 2
eterr(F) in the region of the crossover. The plot of the randomness (Pe) 3
parameter, current, and diffusion coefficient vs tilting forceTat 1.6 2 )
=0.01.(2), 10X (r=3); (2), In(2D); (3), In({x)); dashed line corre- 1.2
sponds to the coherence level with 1. 0.8/,

0 004 008 T 012 0.6
For the existence of the extremum in the coherence of
Brownian motion vs tilt, the conditiof ..> 1 must be satis- FIG. 9. Diffusion coefficient and Péclet number vs temperature
fied. The tilting forceF, has a physical meaning only if the for different tilts: (1), F=0.7;(2), F=0.8(3), F=1.1,(4), F=1.75.
latter inequality is satisfied, having the value in the range
0<Fy<1. This circumstance followg22] from Eq.(14) to-
gether with Eq(11) for F. which leads to the relation In our previous paperf8,9] on diffusion and current in
tilted piecewise linear potentials, we have demonstrated the
possibility to obtain the existence of a maximum in the Pé-
Ak clet number vs temperature for a simple sawtooth potential
1_k_Ak(F°e_ 1. (15) (cf. [5]), in connection with the minimum in the diffusion
coefficient, for increasing noise intensity. In Reff,7] it is
pointed out that for a homogeneous system the Péclet num-
If Fee<<1, the Péclet number F®) does not have a maxi- ber can show a maximum, although neither the diffusion
mum{[23]. On the other hand, E,< 1 is sufficiently close to ~ coefficient nor the average current density shows an extre-
unity, the peak of coherence merges into the region whergyum. The present model allows us to observe for different
the motion cannot be described as the Poissonian procetifs both the phenomena as one can see in Fig. 9. The situ-
anymore and RE) increases monotonically. In particular, ation is actually valid also for the simple sawtooth potential;
this case is actual for the potentials for which the diffusionhowever, the latter effect is small. Thus we can say that the
coefficientD(F) possesses two maxima. characteristic features of the transport of Brownian particles
With the rise of temperature the peak of the coherencén tilted inhomogeneous systems can be reproduced also in
disappears. We have illustrated the situation in Fig. 8 for thehe framework of the minimal schen(ef. Refs.[5,7,24).
randomness parameter. At higher temperature the minimurAurthermore, as one can see in Fig. 10, in the region of static
of the randomness parameter broadens, whereas the regionedfternal force, where PE) exhibits a maximunmminimum
tilting force where the two potential minima have a compa-jn randomness factarthe Péclet number vs temperature has
rable weight enlarges, and the posterior part of the plateagyo maxima, and is extremely sensitive to noise intensity.
diminishes(the transport between extra traps is not describne ghserved behavior of the Péclet number reflects first of

able with a Poissonian hopping process anymarel finally 5 the complicated properties of diffusion coefficient as a
randomness decreases and coherence increases monotqﬂh-ction of the tilting force and temperature

cally.

(1-Fg=

1 "
i
0.75 1 25
r
0.5 Pe3_ {
0.25
257 — F=0.77
. —— F=038
0 05 1 p15s 2 25 2- ;
0.1 0.2 0.3 0.4
FIG. 8. The plot of the randomness paramaters tilt F for
different noise intensitieg1), T=0.01;(2), T=0.03;(3), T=0.06. FIG. 10. The existence of two maxima in Pe Vs
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IV. CONCLUSIONS

In the present paper we have studied the overdamped
Brownian motion in tilted double-periodic piecewise linear
potentials, being obviously more realistic and flexible for
possible applications in condensed matter physics and biol-

PHYSICAL REVIEW E 70, 041104(2004

K ko
Y= f dx H,a(X)HZ,(x) + f dx H,p(x)HZ,(x)

0 K

k 1
J dx H,(x)HZ.(x) + J dx H,g(x)HZ4(x).
k

ko

ogy, in the presence of white thermal noise. It proves that (AB)
due to an additional potential barrier, for certain parametetUsing the notatiornv(x)=V(x)/T, we have
values, many new effects occur in the transport processes of
Brownian particles, in particular ..> F. eresera (e
The general dependence of the diffusion coefficient vs Ha(X) = Do = o f dy e"*a
tilting force obeys as a rule the typical behavior found ear- )
lier. However, in the present case, the acceleration of diffu- ke (¥ K Foa) 4 ! oy
sion is characterized by two regions, related to the two po- * ) dy e"*or+ ) dy e""er ) dy e"*or
tential barriers and different Poissonian processes. In the ! 2
region of the crossover we have demonstrated the possibility Xl 0.s(Y)
to have a resonantlike peak in the Péclet numbéF Pé-or + L dy ez |,
the values of tilting force characteristic of the enhancement
of the coherence, the Péclet number vs noise intensity pos- 12T §
sesses two maxima. Furthermore, for a certain type of poten (xX) = e gtvb1(¥) f ’ dy e ey
tial, the effective diffusion coefficienD(F) can have two * Do «
maxima. " 1 ko1
+ J dy e:’)cl(y) + J dy eIUdl(y) + J dy eIUaZ(Y)
ACKNOWLEDGMENTS ko k !
X+1
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g F(1£D)/2T(1K) k -
Htc(x) = —etvu(x)(f dy e+vc1(y)
APPENDIX: ANALYTICAL RESULTS FOR Do X

DOUBLE-PERIODIC POTENTIAL

In dimensionless units the expressions for the diffusion
coefficient, current, and Péclet factor have the following
form [8]:

D=TYZ?3, (A1)
()= oZ ", (A2)
Pe =@Z%(TY)™, (A3)
where
<p0:1—exp(—T(1_k)>, (A4)

and in the case of the potential determined by E#8) and
(13),

ky ky k
Z:f dx H_a(x)+f dx H_b(x)+J dx H_¢(x)

0 Ky ko

1
+J dx H_4(x),

k

(A5)

041104-6

1 kp+1
+ f dy g valy) + f dy g vazy)

k 1

ko+1
+ f dy e*sz(y) +

ki+1

dy e*vcz(y)) ,

k2+1

e—F(l+1 /2T(1-K)

1
Hid(x) = +Udl(x f dy e*Udl(Y)

ky+1
+ f dy g va2ly) 4 f dy g vb2(y)
1 kp+1

k+1
+ f dy e"ve¥) + f dy eivdz<y>>. (A7)
ko+1 k+1

Performing the integrations in EQ&\7) one obtains after
some cumbersome calculations the algebraic expressions for
the quantitieZ andY, given by Eqs(A5) and (A6):

1
Z= @o(klgab‘ KoOpc+ K Geq — a)
T T T
+ 551(1 -\ + 552(1 -\ - Ess(l -\3)

+ISIN), (A8)
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(1 7\) (1-N\p) L@ -\ . Q@ (1-Xy) , P
. (254+x4ls4>)+T( - ﬁ{xlsﬁzj(lml) S 82—2—g<1+x2> - S x383+§f(1
1-7\g) o K Ak, -k
"‘)\3)] + 4 S 34_%(1'”\4) + 2¢q gl)\lslsl_FSZ%-F )\35333,_ S4S (A9)
[
Here F(1 -k -
)\7:e[< (k) 1 AZ); (AL1)
1 1 1 1 T(1-Kk) T
==+ - —+ -
Gab a b' Obc = b C’
Slz—gab’fg—bc—%’f%,
1 1 1 1 AL N> As  Ag
=— 44— =—<4 -
gcd C d- gad a d- ( ) g g g
Si:)\;ab_)\bc )\Cd Gads
\ _exp<_ Fky _1—A1> 6 N M
v Ti-k T )

S,= = Gay(L — go) + 5 - 304 St

FAK  AA 2 A5 e
)\2:eXF< __>,

3

Ta-k T S5 = Gab = Gbch2(1 = o) + Geahs(1 = @o) = Gadhe(1 = @0),
ha= ex"(% * ?) ! S3=~ Gapha(L ~ ¢0) + Gl ~ @) - —3 %‘7"
o= exy{— g) : $5= ?\_e: ?\ZC +0cd(1 = @) ~ Gacha(1 — ¢o),
As = eXF{H + %) , == GapMs(1 = @o) + Gpcha(l = @) = Ged(1 — o) + gjj
re=oxf ELTK) LA 5= 0% g gl o). (A12

[1] H. Risken, The Fokker-Planck EquatioriSpringer, Berlin, [8] E. Heinsalu, R. Tammelo, and T. Ord, Phys. Re\6® 021111

1996. (2004).
[2] P. S. Landa and P. V. E. McClintock, Phys. R&23 1 (2000. [9] E. Heinsalu, R. Tammelo, and T. Ord, Physica340, 292
[3] P. Reimann, Phys. Ref61, 57 (2002. (2004).
[4] O. M. Braun and Yu. S. Kivshar, Phys. Rep06, 1 (1998). [10] A. Asaklil, Y. Boughaleb, M. Mazroui, M. Chhib, and L. El
[5] B. Lindner, M. Kostur, and L. Schimansky-Geier, Fluct. Noise Arroum, Solid State lonicsl59 331(2003.

Lett. 1, R25(2001). [11] A. Asaklil, M. Mazroui, and Y. Boughaleb, Eur. Phys. J.18),

[6] P. Reimann, C. Van den Broeck, H. Linke, P. H&nggi, J. M. 91 (1999.
Rubi, and A. Pérez-Madrid, Phys. Rev. Le#®7, 010602 [12] F. Montalenti, R. Ferrando, Phys. Rev. 9, 5881(1998.
(200)); P. Reimann, C. Van den Broeck, H. Linke, P. Hanggi, [13] H. P. Weber and H. Schulz, J. Chem. Phg§, 475(1986); K.

J. M. Rubi, and A. Pérez-Madrid, Phys. Rev. @5, 031104 Funke, inSuperionic Solids and Solid Electrolytesdited by
(2002. A. L. Laskar and S. Chandrg@cademic, New York, 1980

[71 D. Dan and A. M. Jayannavar, Phys. Rev. @, 041106 [14] G. Lattanzi and A. Maritan, J. Chem. Phykl7, 10339(2002.
(2002. [15] M. Nishiyama, E. Muto, Y. Inoue, T. Yanagida, and H. Higu-

041104-7



HEINSALU, ORD, AND TAMMELO PHYSICAL REVIEW E 70, 041104(2004

chi, Nat. Cell Biol. 3, 425(2001). the region of tilting force~.<F < F. the length of the path of

[16] R. L. Stratonovich, Radiotekh. ElektroiMoscow) 3, 497 relaxation from a potential maximum into the next minimum is
(1958; English translation ifNon-Linear Transformations of determined as,,=1-Ak being always larger than the length
Stochastic Processesdited by P. I. Kuznetsov, R. L. Stra- Sei=K in a corresponding single-barrier potential. At the same
tonovich, and V. I. TikhonoyPergamon, Oxford, 1965 time, if F.<F,, the length of the path of relaxation in a

[17] J. A. Freund and L. Schimansky-Geier, Phys. Rev6@ 1304 double-barrier potential d&..<F <F. coincides with the one
(1999. in a single-barrier potential.

[18] K. Svoboda, P. M. Mitra, and S. M. Block, Proc. Natl. Acad. [22] Note that forF..>1 the conditionAk<<1-k must be always
Sci. U.S.A. 91, 11782(1994). satisfied as one can see from E#j).

[19] H. Wang, T. Elston, A. Mogilner, and G. Oster, Biophys74, [23] Inequality F..<1 is valid always ifAk>1-k [see Eq.(11)]
1186(1998. and then one can see from E@.4) that Fy<0. However,

[20] If not marked otherwise in the figure caption, we henceforth condition F,<1 can be satisfied also fakk<<1-k which
calculate all the graphics for the same values of potential pa- yield on the basis of Eq15) Fo>1.
rametersk;=0.4,k,=0.5,k=0.6,A;=0.55,A,=1; F..=1.8. [24] B. Lindner and L. Schimansky-Geier, Phys. Rev. L9,

[21] We also note that for a double-barrier potential wath> F. in 230602(2002.

041104-8



